skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yousef, Mahmoud"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The metabolic activity of microbial communities is essential for host and environmental health, influencing processes from immune regulation to bioremediation. Given this importance, the rational design of microbiomes with targeted functional properties is an important objective. Designing microbial consortia with targeted functions is challenging due to complex community interactions and environmental heterogeneity. Community-function landscapes address this challenge by statistically inferring impacts of species presence or absence on function. Similar to fitness landscapes, community-function landscapes are shaped by both additive effects and interactions (epistasis) among species that influence function. Here, we apply the community-function landscape approach to design synthetic microbial consortia to degrade the toxic environmental contaminant bisphenol-A (BPA). Using synthetic communities of BPA-degrading isolates, we map community-function landscapes across increasing BPA concentrations, where higher BPA means greater toxicity. As toxicity increases, so does epistasis, indicating that collective effects become more important in degradation. Further, we leverage landscapes to rationally design communities with predictable BPA degradation dynamics in vitro. Remarkably, designed synthetic communities are able to remediate BPA in contaminated soils. Our results demonstrate that toxicity can drive epistatic interactions in community-function landscapes and that these landscapes can guide microbial consortia design for bioremediation. 
    more » « less
    Free, publicly-accessible full text available March 28, 2026
  2. Microbial consortia exhibit complex functional properties in contexts ranging from soils to bioreactors to human hosts. Understanding how community composition determines function is a major goal of microbial ecology. Here we address this challenge using the concept of community-function landscapes—analogues to fitness landscapes—that capture how changes in community composition alter collective function. Using datasets that represent a broad set of community functions, from production/degradation of specific compounds to biomass generation, we show that statistically inferred landscapes quantitatively predict community functions from knowledge of species presence or absence. Crucially, community-function landscapes allow prediction without explicit knowledge of abundance dynamics or interactions between species and can be accurately trained using measurements from a small subset of all possible community compositions. The success of our approach arises from the fact that empirical community-function landscapes appear to be not rugged, meaning that they largely lack high-order epistatic contributions that would be difficult to fit with limited data. Finally, we show that this observation holds across a wide class of ecological models, suggesting community-function landscapes can be efficiently inferred across a broad range of ecological regimes. Our results open the door to the rational design of consortia without detailed knowledge of abundance dynamics or interactions. 
    more » « less